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ABSTRACT 

A novel multi-Gaussian function model is reported for deconvoluting directly the Tung equation for 
instrumental band broadening (column dispersion) in gel-permeation chromatography. Using the Fourier 
transform technique. Tung’s integral equation is reduced to a simple expression for the calculation of the 
true molecular weight distribution from an experimental chromatogram. An example of numerical calcula- 
tion with computer simulation and two examples of experimental results for commercial polymers are 
given. 

INTRODUCTION 

Since the development of gel-permeation chromatography (GPC) by Moore [l], 
there has been increasing acceptance and use of this method for determining the 
molecular weight distributions (MWD) of resins and polymers, and better methods of 
processing the data and interpreting the results are needed. It has been shown by Tung 
and co-workers [224] and Hess and Kratz [5] that axial dispersion, which results in 
peak broadening, must be considered and corrected in order to obtain better 
agreement between calculated and experimental MWD results. For the difficult 
deconvolution of Tung’s proposed equation, mathematical methods proposed by 
several workers [3-6] lead to some practical difficulties, such as oscillation of the 
dispersion-corrected results near the beginning and end of the chromatogram [3,4] and 
computational difficulties [5]. According to Tung’s work [4], the Gaussian function is 
a reasonable approximation for many narrow-distribution chromatograms, and the 
chromatogram in GPC is considered as a multi-component model in this paper and 
each component is described by a Gaussian function. Hence the dispersion correction 
of Tung’s equation is transformed into a non-linear regression analysis and a Fourier 
transform technique. The proposed method describes a polymer as a blend of 
components, each of them defined by its parameters and weight fraction. It provides 
the information needed in the development and engineering of a polymerization 
process and may be related to operating conditions. 
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MULTI-COMPONENT MODEL 

A chromatogram in this study is assumed to be a blend of several components, 
each defined by its weight fraction and a set of parameters. A general equation for the 
normalized experimental chromatogram flv) is given by 

f(V) = f CiUi@i, V) 

i=l 
(1) 

and 

~Ci=l,Ci>O,i=1,2 ,..., n 
i=l 

(14 

where n represents the number of components in the blend, Ci denotes the weight 
fraction of the ith component and Vi is the Gaussian equation describing the form of 
the ith component calculated for an eluent volume v, with parameters given by the 
vector p: 

U&i, V) = JiJi eXp[ - hi(V - Vi)2] (2) 

and 

~i=(hi,VJ,hi<h,i= 1,2 ,..., n (24 

h represents the dispersion factor. Hence 3n - 1 parameters are needed to characterize 
a blend and a non-linear optimization procedure is employed. 

DETERMINATION OF n, Ci AND VECTOR pi 

One purpose of this work is to reproduce the whole chromatogram and the 
objective function of the non-linear regression is to minimize the sum of relative errors: 

Qn = f [flvj) - i CiuiQi, vj)]2 

j=l i=l 

(3) 

subject to 

fl Cc = 1, Ci > O,hi < h, i= 1,2, . . . . n (34 

where m represents the number of experimental points. The unknown parametersn, Ci 
and pi should be found. The decision-making process involves assigning values to the 
parameters and we can seek optimum values of the parameters in the least-squares 
sense, that is, those values for which the sum of squares of the experimental deviations 
from the theoretical curve is minimized. This procedure is called least-squares fitting 
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and is a constrained non-linear optimization problem. Determination of the model 
starts with one component and the number of components is increased until an 
acceptable fit is obtained between the computed curve and experimental curve. Hence 
it can be understood that the procedure is binary optimization, one being the 
optimization of the value of n and the other the optimization of the values of CL and pi 
for a given n. A flow chart of the procedure is illustrated in Fig. 1. 

FOURIER TRANSFORM TECHNIQUE 

The equation for dispersion correction proposed by Tung [2] is 

to pnrrmstsrs and u. 

chromatogram 

Fig. 1. Flow chart of non-linear regression for optimization of parameters. 
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i-m 

A4 = s w(Y)dv - Y) dv (4) 
-a, 

where v and y are used to denote the eluent volume. This equation relates the observed 
chromatogramflv) to the distribution function w(v) that would be obtained if axial 
dispersion effects were absent. The function g(v - y) is the general expression of the 
dispersion function, which is an approximately Gaussian type [3]: 

g(v) = fi. exp( -hv’) (5) 

where h represents the dispersion factor. It is.necessary to have some convenient 
methods of solving Tung’s integral equation. The Fourier transform (FT) method [7] 
can be used to give a formal solution of eqn. 4. We can define the FT offlv), w(v) and 

g(v) by 

+a, 

s f(v) exp(ikv) dv 

-CO 

(6a) 

+og 

W(k) = -!- 
fi s w(v) exp(ikv) dv 

-m 

(6b) 

k(k) = --!- 
J27t s g(v) exp(ikv) dv (6~) 

-cc 

We then take the FT of eqn. 4, applying the Faltung theorem [7] to the integral: 

F(k) = &i W(k) G(k) (74 

or 

Eqn. 6c can be solved as follows: 

G(k) = k rfi.exp(--kv’ + ikv)dv 

-m 

W) 

(84 
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Let 

<=JL~andd+Jj;dv 
2J71 

then 

G(k) = - &Jl;i;;.exp[-kz/(4h)].-+ rexp(-:‘)d( 
h 

-m 

= -!--. exp[ - k2/(4h)] 

J271 
(W 

Solving eqn. 6a for F(k) combined with eqn. 5, by analogy with the method used above, 
the following expression is derived: 

F(k) = 2 $I Ci exp[ - k2/(4hJ + ikvi] (9) 

Combination of eqns. 7b, 8b and 9 gives 

V) = &jr Ci exp[ -k2/(4hJ + ikvi + k2/(4h)] (10) 

Solving this equation for W(k) and taking the inverse transform of the equation gives 

+a0 

s W(k) exp( - ikv) dk 

-cc 

= & rif; Ci exp( - [ 1/(4hJ - l/(4h)1k2 - j(v - v&I dk 

--m 

For the validity of the above expression, it is reasonable to ask for h greater than hip and 
putting 

and 
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then 

WV) = A,$ Ciexp[-(V - Vi)2/(l/hi - l/h)]’ 
I 1 s 

exp( - t2) d5 

-00 

= it1 ‘i&i J& .exp[-(v - Vi)2/(l/hi - l/h)] 

Let 

pi = l/(l/hi - l/h) 

then 

W(V) = i CiJpiin' eXp[ -Pi(V - Vi)‘1 

i=l 

(11) 

This simple expression involves the parameter h, which is a function of the set of 
columns used, and hi, vi and Ci, which are related to the ith Gaussian function. The 
mathematical operations can be performed by using a computer. Several examples are 
given below. 

RESULTS AND DISCUSSION 

A numerical example is used to demonstrate the validity of the procedure. We 
assume that there is a known two-component MWD for w(v), Cr = 0.65, ~7~ = (0.5, 
- 1.2), C2 = 0.35 andp, = (0.45, 1.5), and that the value of the dispersion factor h is 
taken as 0.8 over the entire range. The simulated chromatogramflv) shown in Fig. 
2 (dashed line) is computed by direct integration of eqn. 1. The optimum values of 
non-linear regression are C1 = 0.651, fil = (0.308, - 1.19), C2 = 0.349 and p2 = 
(0.288, 1.50). The results of dispersion correction after Fourier transformation are 
shown in Fig. 2. It is obvious that the procedure works well and effectively. 

The dashed line plotted in Fig. 3 represents the chromatogram of commercial 
polystyrene (PS) with a narrow MWD and the crosses indicate the results of 
optimization by non-linear regression for which the optimum values are given in Table 
I. The relative error is 1.89 10e2 for one component and decreases to 1.44 . 10e3 with 
two components and to 4.50 low4 for three components. 

The solid line in Fig. 3 illustrates the chromatogram with a set of columns of 
greater resolving power. 

The chromatogram for commercial poly(methy1 methacrylate) (PMMA), which 
has a broader MWD, is shown in Fig. 4 (symbols as in Figs. 2 and 3), and the optimum 
values of the parameters are given in Table II. The relative error decreases from 4.48 . 
10V4 to 3.10 1O-4 when the number of components is increased from one to two. It is 
apparent that the effect of the dispersion correction for a broader MWD is not as great 
as that for a narrow MWD, for which the dispersion is important. Satisfactory 
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Fig. 2. Uncorrected and corrected chromatograms for a known MWD. Dashed line, uncorrected 
chromatogram; solid line, known chromatogram, x , corrected chromatogram. 

Fig. 3. Uncorrected and corrected chromatograms for a narrow MWD polystyrene sample. Symbols as in 

Fig. 2. 

TABLE I 

OPTIMUM VALUES OF PARAMETERS FOR PS 

i Ci hi Vi Qi 

1 0.84 0.398 44.08 1.89. lo-’ 
2 0.12 0.430 46.10 1.44, 1o-3 
3 0.0399 0.301 47.40 4.50. 1o-4 

35 31 i7 i3 

Eluent volume count 

Fig. 4. Uncorrected and corrected chromatograms for a PMMA sample. Symbols as in Fig. 2. 



64 J. FENG, X. FAN 

TABLE 11 

OPTIMUM VALUES OF PARAMETERS FOR PMMA 

1 0.99 0.092 28.25 4.48. lo+ 
2 0.01 0.050 31.00 3.10, 1o-4 

agreement of the dispersion corrections is obviously obtained, but it should be noted 
that use of dispersion corrections, as shown in Figs. 3 and 4, is not a substitute for use 
of columns with the highest plate number available. 

In the calculation of dispersion corrections for PS and PMMA in Figs. 3 and 4, 

0i . , . . . , 

30 34 38 42 44 
Eluent volume count 

Fig. 5. Relationship between dispersion factor h and eluent volume v. 

TABLE 111 

OPTIMUM VALUES OF PARAMETERS FOR PS 

1 0.85 0.403 44.10 2.02.10-Z 
2 0.13 0.410 46.17 1.14.10-3 
3 0.02 0.290 47.45 6.67’ 1O-4 

TABLE IV 

OPTIMUM VALUES OF PARAMETERS FOR PMMA 

i Ci hi Vi Qi 

1 0.98 0.090 28.30 4.82. lo-“ 
2 0.02 0.052 31.00 2.28’ 1O-4 
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a variable value of h was used. The papers by Tung and co-workers [24] and Hess and 
Kratz [5] indicate that h varies, being smaller for smaller eluent volumes. The value of 
h was determined for monodisperse PS standards by using a Gaussian peak 
distribution as in eqn. 5. Fig. 5 shows the relationship between hand the eluent volume 
V. 

The two examples shown above were tested in another experiment (chromato- 
grams not shown), and the results of optimum programming are given in Tables III 
and IV. 

We consider that the majority of residual relative errors are produced by the 
assumption that a Gaussian distribution can be used to determine the dispersion factor 
h. As.mentioned above, the monodisperse PS samples are standard substances for the 
determination of h but the MWDs of these samples are like the narrow MWD shown in 
Fig. 3. The assumption leads to the method proposed here, not for total deconvolution. 
We can deduce from Tables III and IV that the values of the parameters are 
reproducible experimentally. The uniqueness of the parameters is ensured by the 
algorithm with optimization theory. Although the parameters may be variable in 
different optimum algorithms, the final w(v) results are not affected. A more detailed 
calculation may be needed to test the method described here. 
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